top of page

Off Grid Systems

Sample Narrative

PLACEHOLDER TEXT


Off-the-grid or off-grid is a characteristic of buildings and a lifestyle[1] designed in an independent manner without reliance on one or more public utilities. The term "off-the-grid" traditionally refers to not being connected to the electrical grid, but can also include other utilities like water, gas, and sewer systems, and can scale from residential homes to small communities. Off-the-grid living allows for buildings and people to be self-sufficient, which is advantageous in isolated locations where normal utilities cannot reach and is attractive to those who want to reduce environmental impact and cost of living. Generally, an off-grid building must be able to supply energy and potable water for itself, as well as manage food, waste and wastewater.


Energy


This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (June 2021) (Learn how and when to remove this template message)


Energy for electrical power and heating can be generated on-site with renewable energy sources such as solar (particularly with photovoltaics), wind, or micro hydro. Additional forms of energy include biomass, commonly in the form of wood, waste, and alcohol fuels and geothermal energy, which uses differences in the underground temperature to regular indoor air environments in buildings. It is possible to simply eliminate energy shortage with e.g. solar and wind tech such as in Old Order Amish (while used and sanctioned, not all agree) and Old Order Mennonite communities, and many Amish people still use steam engines.


Electrical power


Grid-connected buildings receive electricity from power plants, which mainly use natural resources such as coal and natural gas as energy to convert into electrical power. 2017’s breakdown of world energy sources shows that the globe, mainly dependent on grid power, uses a majority of non-renewables, while popular renewables such as solar PV and wind power are a small portion. When off the grid, such as in Africa where 55% people of do not have access to electricity, buildings and homes must take advantage of the renewable energy sources around them, because it is the most abundant and allows for self-sufficiency.


Solar photovoltaics


Solar photovoltaics (PV), which use energy from the sun, are one of the most popular energy solutions for off-grid buildings. PV arrays (solar panels) allow for energy from the sun to be converted into electrical energy. PV is dependent upon solar radiation and ambient temperature. Other components needed in a PV system include charge controllers, inverters, and rapid shutdown controls. These systems give off-grid sites the ability to generate energy without grid connection. Every quarter, Bloomberg New Energy Finance evaluates manufacturers on their actual projects over the previous quarter and publish a list of Tier 1 Solar Module (panel) Manufacturers.


Wind turbines


Wind energy can be harnessed by wind turbines. Wind turbines components consist of blades that get pushed by wind, gearboxes, controllers, generators, breaks, and a tower.[9] The amount of mechanical power captured from a wind turbine is a factor of the wind speed, air density, blade rotational area, and the aerodynamic power coefficient of the turbine.


Micro-hydro


Where water is abundant, hydropower is a promising energy solution. Large scale hydropower involves a dam and reservoir, and small scale micro-hydro can use turbines in rivers with constant levels of water. The amount of mechanical power generated is a factor of the flow of the stream, turbine size, water density, and power coefficient, similar to wind turbines. The energy from waves and tides can also provide power to coastal areas.


Batteries


When renewables produce energy that is not currently needed, the electrical energy is usually directed to charge a battery. This solves intermittency issues caused by the non-constant production of renewables and allows for variations in building loads. Common batteries include the lead-acid battery and lithium-ion battery.


Hybrid energy systems


In order to protect against intermittency issues and system failures, many off-grid communities create hybrid energy systems. These combine traditional renewables like solar PV, and wind, micro-hydro, batteries or even diesel generators. This can be cheaper and more effective than extending or maintaining grids to isolated communities.


Radioisotope thermoelectric generator


Historically remote applications such as lighthouses, weather stations and the likes which draw a small but continuous amount of power were powered by Radioisotope thermoelectric generators (RTGs) with the needed radioisotopes either extracted from spent nuclear fuel or produced in dedicated facilities. Both the Soviet Union and the United States employed numerous such devices on earth and every deep space probe reaching beyond the orbit of Mars (and even some in the inner solar system) has had an RTG to provide power where solar panels no longer deliver sufficient electricity per unit of mass.


Temperature control


Types of solar-energy passive off-grid cooling systems could be used for cooling houses and/or refrigeration – including some that do not require electrical components and are allowing for chemically-stored on-demand energy. Such may be useful for climate change mitigation and adaptation.


Communications


Meshnets such as B.A.T.M.A.N. could be used to sustain or establish communications without conventional infrastructure. Moreover, off-grid communications technologies could be used for environmental, security and agricultural monitoring as well as for emergency communications and coordination – such as for work assignation.


bottom of page